Tuyển sinh Tuyển sinh

Xemina Xemina

Xêmina liên phòng Đại số và Lý thuyết số
Ngày đăng 10/07/2019 | 11:29  | Lượt xem: 90

Polynomial parametrization of algebraic groups over rings

Báo cáo viên: Nguyễn Ngọc Đông Quân (Univ, Notre Dame)

Thời gian: 9h, Thứ 4, 10/7/2019
Địa điểm: Phòng 611-612, Tòa A6, Viện Toán học
Tóm tắt: In 1938, Skolem asked a question as to whether the group $SL_n(Z)$ is polynomially parametrized, i.e., there is an element $A(x_1,...,x_d)$ in $SL_n(Z[x_1, x_2,.....,x_d])$ such that every element in $SL_n(Z)$ is of the form $A(r_1, r_2,....,r_d)$ for some integers $r_1,....,r_d$. It was not until 2010 when Vaserstein positively answered this question. One can replace the ring of integers $Z$ by an arbitrary commutative ring $R$, and ask a similar question as to whether the group $SL_n(R)$ is polynomially parametrized. I will discuss my recent result about the polynomial parametrization of $SL_n(F_q[T])$, where $F_q[T]$ is the ring of polynomials over a finite field $F_q$, which can be viewed as a function field analogue of Vaserstein’s result. I will also discuss my recent result in joint work with Michael Larsen (Indiana University) which generalizes Vaserstein’s theorem to arbitrary number rings.

Hội nghị Hội nghị

Bài giảng trung tâm Bài giảng trung tâm